RESISTANCE TRAINING IN ELDERLY

http://images.sciencedaily.com

Prof. dr. Vojko Strojnik
UNIVERSITY of LJUBLJANA
Faculty of sport
Ljubljana
SLOVENIA

AETIOLOGY OF SARCOPENIA

CHANGES IN MUSCLE ACTIVATION with age

- •Impaired activation-contraction coupling (Delbono in sod., 1997)
- •Reduced MU recruitment and AP frequency (Kamen in sod., 1995)
 - Reduced frequency of AP compensated with slower muscles
- Increased coaktivation of agonists and antagonists

(Macaluso in sod., 2002)

- Reduced agonists' activation
- Increased antagonists' activation
- Less active cross-bridges

(D'Antona, 2003)

MUSCLE ARCHITECTURE CHANGES with age

	Vmax absol.	Vmax rel.
	(rad/s)	(length/s)
Young	5.73	1.98
Elderly	4.83	1.80
Differ	-16%	-9.1%

Lieber and Frieden, 2000

- •Shorter fascicles 10%
- •Smaller penation angle 13%

STRENGTH AND POWER CHANGE WITH AGE

Isometric leg extension

Maximum force and rate of force development

POWER CHANGE WITH AGE

Jumping
Squat jump; Counter-movement jump

REDUCED STRENGTH AND POWER with age

- Decreased motor abilities
- Increased fall probability
- Reduced mobility
- Decreased functional cabilities

• . . .

Kressig and Proust, 1998

http://planetearthdailyphoto.blogspot.com

STRENGTH AND POWER AS RISK FACTORS FOR FALLING

- •Low muscle strength as a risk factor in nursing home residents (Whipple et al., 1987)
- •Reduced dorsifexion, quadriceps strength and short-term power (Maki, 1997)
- •Lower limb power and asymetry between limbs more predictive than strength for falling (Skelton et al., 2002)
- •Increased fear of falling due to motor incompetence (Maki, 1997)

TREATMENT OPTIONS FOR SARCOPENIA

Table 2 Summary of treatment options

Intervention	Effect	Comments
Exercise	Increased cardiovascular fitness with increased endurance	Pros: overall beneficial effects
Aerobic	Increases mitochondrial volume and activity	of exercise to individual
Resistance	Increased muscle mass and strength	Cons: motivation
	Increased skeletal muscle protein synthesis and muscle fiber size	to exercise remains low
Nutritional supplement	Improvement in physical performance	Proce oncurse good protein intoles
Nutritional supplement	Varying evidence of increased muscle mass and strength	Pros: ensures good protein intake Cons: may reduce natural food intake
Hormone therapy Testosterone	Varying evidence of increased muscle mass and strength	Cons: masculinization of women; increased risk of prostatic cancer in men
Estrogen	Poor evidence of increased muscle mass but not function	Cons: risk of breast cancer
Growth hormone	Some evidence for increased muscle mass. Varying evidence for increased muscle strength	Cons: side effects including fluid retention, orthostatic hypotension
Vitamin D	Variable evidence for increased muscle strength Reduced falls in nursing home residents	Pros: fracture reduction; possible cardiovascular benefits
ACE inhibitors	Some evidence for increased exercise capacity	Pros: other cardiovascular benefits Cons: renal function needs monitoring
Creatine	Variable evidence of increased muscle strength and endurance especially when combined with exercise	Cons: reports of nephritis
Potential new treatments		
Myostatin antagonists	No trials in older people	
PPAR [δ] agonist	No human trials	
AICAR	No human trials	

Abbreviations: PPAR-δ, peroxisome-proliferator-activated receptor-δ; AICAR, 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside; ACE, angiotensin-converting enzyme.

GOALS OF RESISTANCE TRAINING

- Muscle activation level

 (intra-muscular coordination)
- Ballistic actions power (inter+intra-muscular coordination)
- •Reactive actions (SSC, stiffness control)
- Hypertrophy (predominantly fast muscle fibres)
- Muscle endurance (high numer of repetitions)

ADAPTATION TO RESISTANCE TRAINING

CHANGE OF ACTIVATION AND HYPERTROPHY

http://hubpages.com

men (65-81 yrs), 16 weeks, 3/week, 80% 1 RM toe rising, leg press

10 weeks, 3/week, hypertrofy in activation leg-press

6 months, 2/week, hypertrofy in activation leg-press, knee extension

Hormonal response Comparison: young (30 yrs) – old (62 yrs)

10 weeks, 3/week, loads: 3-5 RM, 8-10 RM, 12-15 RM

Kraemer et al., 1999

Training – detraining; muscle activation

24 weeks, 3/week, leg-press

Training – detraining; maximum strength

24 weeks, 3/week, leg-press

Hakkinen et al., 1999

Training – detraining; walking speed

24 weeks, 3/week, leg-press

METHODS OF RESISTANCE TRAINING for older persons

Strength

Muscle activation - 3-5 RM, slow concentric Hypertrophy - 8-10 RM, slow concentric

Power

12-15 RM

<6 reps, explosive concentric

Circuit training

8-10 exercises

<35s, isometric, slow concentric

Stretching

pasive

EXERCISES OF RESISTANCE TRAINING for older persons

basis for other physical activities

trunk stability

(flexion, extension, abduction, rotation)

•leg extension

PERIODISATION OF RESISTANCE TRAINING for older persons

training

hypertrophy (>10 weeks, 2/week) activation (<4 weeks, 3/week) power

detraining

<10 weeks, on training period dependent

RECOMENDATION FOR RESISTANCE TRAINING for older persons

American College of Sports Medicine

http://aboutagingprocess.com

Frequence:

at least twice a week

Intensity (scale from 0 to 10):

- •5-6 (moderate)
- •7-8 (intensive)

Volume:

- •8-10 exercises for main muscle groups
- •8 to 12 repetitions

Exercises:

- weights
- calistenics with additional load

EFFECTS OF RESISTANCE TRAINING

Benefitial for many chronic medical conditions at older age:

http://www.aimphysicaltherapy.com

- depression
- diabetes type 2
- hypertension
- inflamatory arthritis
- neuro-muscular diseases
- overweight
- osteoarthritis
- osteoporosis
- Parkinson's disease and other degenerative neural diseases
- better cognitive functioning
- higher self-esteem