Biomechanics in Paralympic Swimming: Past, Present and Future

Daniel Daly ${ }^{1}$ Jonas Martens ${ }^{1}$, \& Ingi Pór Einarsson²

(Classification) Research

-Comparison of

- End Race Result (Wu \& Williams, Daly \& Vanlandewijck, APAQ, 1999)
- Race components (start, turn, finish) (Daly et al, APAQ, 2001; Malone et al. MSSE, 2001; Pelayo et al. MSSE, 1999)
- Medals per impairment group (Wu \& Williams, APAQ, 1999)
- Swim Specific Physical Characteristics (Chatard et al. IJSM, 1990; Pelayo et al. EJAPOP, 1995)
- Performance determining biomechanical factors

Amputees

Hemi or Diplegia

Functional Classification Process

WATER
Comparison with Profile in Manual
II. Observation during competition

Criteria for Classification Fairness (end race result)

1. The speed of the world records should show a predictable decrease with decreasing functional class.
2. Race performances of the best swimmers should clearly discriminate among classes.

The speed of the world records should show a predictable decrease with decreasing functional class

Competitiveness in Male Finalists (1000pts = Class World Record)

Comparison of Race Results Among Classes: Medley

Race parts: 200-m Medley:

 End Results = start+swim+turn+finish| 5 m | 15 m | 25m | 45 m | |
| :---: | :---: | :---: | :---: | :---: |
| START (7.5\%) | | SEGMENT 1 BUTTERFLY (5\%) | SEGMENT 2 BUTTERFLY (8.75\%) | $\begin{aligned} & \text { TURN IN } \\ & \text { (1) } \\ & (3.75 \%) \end{aligned}$ |
| RACE LAP $1 \longrightarrow$ | | | | |
| $\begin{gathered} \text { TURN IN (2) } \\ (3.75 \%) \end{gathered}$ | SEGMENT 4
 BACKSTROKE (8.75\%) | | SEGMENT 3 BACKSTROKE (8.75\%) | TURN OUT (1) (3.75\%) |
| \longleftarrow RACE LAP 2 | | | | |
| TURNOUT
 (2) (3.75\%) | \rightarrow SEGMENT 5 BREASTSTROKE (8.75\%) | | SEGMENT 6 BREASTSTROKE (8.75\%) | $\begin{aligned} & \text { TURN IN } \\ & (3) \\ & (3.75 \%) \end{aligned}$ |
| RACE LAP $3 \longleftrightarrow$ | | | | |
| $\begin{aligned} & \text { FINISH } \\ & \text { (2.5\%) } \end{aligned}$ | SEGMENT 8 FREESTYLE (10.00\%) | | SEGMENT 7
 FREESTYLE (8.75\%) | TURN OUT (3) (3.75\%) |
| ¢ RACE LAP 4 | | | | |

Ele Edit Control Analyze View Tools Hell

Race speed and stroking models are similar

 in all classes and between populationsStroke Length and Speed in Men and Women

Relationship between Stroke Length and Speed is only clear in higher classes (Crawlstroke)

No relation Stroke Rate and
Speed

BREASTSTROKE IS DIFFERENT?

Stroke Length And Speed in 100m Breast

Compare the specific functional abilities among classes

Swimming Speed in 50, 100 \& 400-m Free in CP Swimmers and Controls

Stroke Length of CP Swimmers and Controls

Different story than between race changes

Osborough et al, 2009 \& 2010

Arm co-ordination (Maglischo)

Stroke Rate in Arm Amputees (Osborough et al, 2009)

Stroke Length in Arm amputees (Osborough et al, 2009

Arm co-ordination (Maglischo, Chollet, Seifert)

Supposition > 0
Opposition $=0$

Arm co-ordination (100 m race speed)

No relation between IDC and SL or SR, Slight relation with relative performance

Group	Class	$\operatorname{IdC}(\%)^{*}$	V $(\mathrm{m} / \mathrm{s})$	Lengln (m)	Rate $(\mathrm{st} / \mathrm{min})$	Points
I (4)	5.5	<-1.09	0.86	1.4	36.71	641
II (9)	7.67	$0-+8$	1.1 -			

Disability swimmers use similar IDC to
III (5)
$6 \quad+12-+28$
0.9 able bodied?

Satkunskiene et al (2005). Coordination in arm movements during crawl stroke in elite swimmers with a loco-motor disability. Human movement science, 24(1), 54-65.

Means and SD of adapted IDC ($\mathrm{IdC}_{\text {adpt }}$), and IDC for both the affected (IdC afif) and unaffected ($\mathrm{IdC}_{\text {un }}$) arms for 13 crawl swimmers

Percentage of maximum swimming speed ($\left.\begin{array}{ll}M & S D\end{array}\right)$ $\begin{array}{lllll}80 & 85 & 90 & 95 & 100\end{array}$

Note 1: ${ }^{a}$ Differences between $\mathrm{IdC}_{\mathrm{aff}}$ and $\mathrm{IdC}_{\mathrm{un}}$ are statistically significant $(p<0.01)$.

Osborough at al (2009). Relationships between the front crawl stroke parameters of competitive unilateral arm amputee swimmers, with selected anthropometric characteristics. Journal of applied biomechanics.

Relative arm stroke phase durations for both the affected and unaffected arms

Take Home Message

As a consequence of being deprived of an important propelling limb, at fast swimming speeds SF is more important than SL in influencing the performance outcome of these single-arm amputee swimmers.

Passive drag testing

Passive drag at race speed

Passive drag(1m/s) vs race speed

-Drag decreases with class but the variablity is equal over speed.
-Propulsion more related to speed than drag but drag easier to decrease

Research Question

100-m free Paralympic competitors with a loco-motor disability all use similar speed and arm stroking race patterns (Daly et al. 2003).
> Do trained and experienced Intellectual Disability swimmers generally adapt these patterns?

Mid-pool speeds for 5 groups of $100-\mathrm{m}$ freestyle championship finalists

Experience: race speed pattern

Stroke length per race segment for 5 groups of 100m freestyle championship finalists

Race speed in 100-m Breast (50m)

Mid Pool Speed in 100 m Breast Finalists

Within Race Speed changes in 100 m Breaststroke

Turn Speed in Olympic Breaststroke Finalists

Turn Index in Olympic 100m Breast Finalists

Relative Performance

Table 6: Mean performances for men and women finalists in Global Games swimming competition. 1=Actual times, 2=percentage scores related to the best American Age Group performances, 3= Point score related to ID event world record, 4= point score related to able bodied event world record.

Performances	MEN					WOMEN				
Time (finalists) ${ }^{1}$	n	Mean	SD	Min	Max	n	Mean	SD	Min	Max
50 crawl	5	25.84	0.91	24.59	26.92	6	31.79	3.20	29.40	38.09
100 crawl	6	57.78	2.19	55.17	61.18	6	68.26	3.54	64.86	74.44
50 back	6	31.43	1.47	30.09	33.56	6	36.11	2.80	32.37	39.70
100 back	6	66.38	1.41	63.74	67.82	6	83.39	6.27	75.06	91.00
50 breast	6	35.04	1.55	33.29	37.10	6	40.92	2.57	39.23	45.81
100 breast	5	76.01	3.02	71.52	78.78	6	88.49	3.30	85.32	93.97
50 fly	6	29.05	0.64	27.98	29.63	6	33.81	1.45	31.39	35.68
10 ffl .	6	6847	177	6627	7102	5	7088	308	7236	8200

1. ID swimmers are relatively poor in

100m fly (explosive strength)

2. ID women are less good than ID men.

50 breast	6	629.92	81.34	525.57	727.47	6	706.14	114.83	494.68	787.68
100 breast	5	685.33	84.89	610.75	816.26	6	765.19	81.94	634.78	848.08
50 fly		005.45	61.33	842.07	1000	6	807.71	108.95	680.93	1000.00
100 fly	6	801.51	61.63	715.50	877.04	5	665.78	108.39	567.19	848.47
200 IM	6	844.63	132.65	645.06	991.42	6	707.95	133.48	520.22	838.73
$\overline{\mathrm{AB}}$ point ${ }^{4}$										
50 crawl	5	547.99	58.54	481.53	631.79	6	425.95	99.83	237.55	516.59
100 crawl	6	516.44	57.49	432.02	589.15	6	440.09	63.46	335.01	506.45
50 back	6	410.33	55.10	333.37	462.51	6	423.17	102.75	308.67	569.42
100 back	6	437.20	29.16	408.95	492.61	6	323.62	73.29	242.02	431.27
50 breast	6	422.12	54.51	352.19	487.49	6	396.91	64.54	278.06	442.75
100 breast	5	435.63	53.96	388.22	518.85	6	395.10	42.31	327.76	437.90
50 fly	6	478.80	32.79	450.25	534.70	6	424.41	57.25	357.79	525.45
100 fly	6	369.34	28.40	329.70	404.14	5	355.44	57.87	302.81	452.97
200 IM	6	431.83	67.82	329.80	506.88	6	402.94	75.97	296.09	477.37

Body Structure Flexibility and Strength compared to European Elite

Turning problems in ID swimmers

Computational Fluid Dynamics (CFD) analysis

Computer simulation model of the swimmer developed.

Driven by real kinematic data from 3D video analysis.
Model is personalized to the swimmer by scanning in body segments.
Propulsive and drag forces are calculated based on model input.
In near future, may help find the optimal solution for each swimmer.

* LIMITED to one hand movement
* Large financial investment
* Critical Mass may not be present

J Biomech. 2008 Sep 18;41(13):2855-9.
Using reverse engineering and computational fluid dynamics to investigate a lower arm amputee swimmer's performance. Lecrivain G, Slaouti A, Payton C, Kennedy I.

Optimizing kick rate and amplitude for Paralympic swimmers via net force measures FULTON et al. 2011 JSS

- Determine optimum kick characteristics, 12 Paralympic swimmers aged 19.8+2.9 years (mean speed.
- Conditions (i) a prone freestyle kicking in a F and kick amplitudes. r technology.
- Speed was assessed force was assessed u
- When peak speed wa 24.2+5.3\% (90\% conf per minute.

- Larger amplitude kicki
- The kick rate and amplitude profile adopted by Paralympic swimmers are appropriate

The Influence of Swimming Start Components for Selected Olympic and Paralympic Swimmers, Burkett et al. 2010 , J. Applied Biom.

Olympic	Arm Amp	Leg Amp	CP
$(n=5)$	$(n=4)$	$(n=4)$	$(n=7)$

Time (s)
Start to 15 m

$6.24 \pm 0.17^{\mathrm{a}}$	$7.52 \pm 0.52^{\mathrm{b}}$	$8.00 \pm 0.29^{\mathrm{b}}$	$7.97 \pm 0.90^{\mathrm{b}}$
$0.77 \pm 0.05^{\mathrm{a}}$	$0.81 \pm 0.07^{\mathrm{b}}$	$0.91 \pm 0.04^{\mathrm{b}}$	$0.93 \pm 0.13^{\mathrm{d}}$
$0.60 \pm 0.05^{\mathrm{a}}$	$0.43 \pm 0.10^{\mathrm{b}}$	$0.54 \pm 0.04^{\mathrm{c}}$	$0.34 \pm 0.14^{\mathrm{b}}$
$3.39 \pm 0.77^{\mathrm{a}}$	$2.72 \pm 1.10^{\mathrm{b}}$	$1.90 \pm 0.73^{\mathrm{b}}$	$2.25 \pm 0.45^{\mathrm{b}}$
$1.35 \pm 0.66^{\mathrm{a}}$	$3.15 \pm 0.73^{\mathrm{b}}$	$4.76 \pm 0.56^{\mathrm{b}}$	$3.93 \pm 1.21^{\mathrm{b}}$

Distance (m)
Entry

$3.17 \pm 0.48^{\mathrm{a}}$	$2.94 \pm 0.40^{\mathrm{a}}$	$2.65 \pm 0.09^{\mathrm{c}}$	$2.61 \pm 0.36^{\mathrm{c}}$
$8.87 \pm 0.66^{\mathrm{a}}$	$6.68 \pm 1.26^{\mathrm{b}}$	$4.36 \pm 0.89^{\mathrm{b}}$	$5.63 \pm 1.74^{\mathrm{b}}$
$2.96 \pm 1.07^{\mathrm{a}}$	$5.37 \pm 1.39^{\mathrm{b}}$	$7.82 \pm 0.94^{\mathrm{b}}$	$6.75 \pm 2.10^{\mathrm{b}}$

Velocity (m / s)
Underwater
$2.69 \pm 0.42^{\text {a }}$
$2.39 \pm 0.29^{\text {b }}$
$1.86 \pm 0.15^{\text {c }}$
$1.61 \pm 0.43^{\mathrm{c}}$
Free Swim
$2.38 \pm 0.23^{\text {a }}$
1.69 ± 0.52^{b}
$1.73 \pm 0.29^{\text {b }}$
$1.52 \pm 0.90^{\text {b }}$
Note. For each specific variable (e.g., start to 15 m), the same superscript letter indicates no significant difference $(P<.05)$ within this specific variable, and a different letter indicates significant difference.

Lower trunk muscle activity during crawl swimming in a single leg amputee

- Successful crawl swimming depends on body roll along the longitudinal axe.
- Sufficient core trunk stability is needed to balance out the forces generated by the upper and lower extremities.
- Various theories on how a swimmer generates and controls the body roll.
- From those theories it can be expected that a single leg amputee will show different result from a swimmer using both legs

Method

เ..:-」 Camera 4
mpic
—————

Result - arm cycles

Both swimmers had shorter glide to the opposite side of their preferred breathing side, even though they did not breath

Results - body roll and muscle activity

- Both swimmers roll less at highr speed
- S9 swimmer rolls more to the right side (amputated side)
- S9

$$
-\mathrm{L} 26^{\circ}-\mathrm{R} 50^{\circ} \quad \mathrm{L} 21^{\circ}-\mathrm{R}^{\circ} 28^{\circ}
$$

- Tri

$$
-\mathrm{L} 23^{\circ}-\mathrm{R} 25^{\circ} \quad \mathrm{L} 18^{\circ}-\mathrm{R}^{\circ} 20^{\circ}
$$

- Clear muscle pattern is observed in ES for both swimmers but not so clearly in RA
- More roll = more muscle activity in ES

Results - body roll and muscle activity

EMG chant for 59

Bollo

Rall max Let $2 t^{*}$
Aollo
Aoll max Fight 28*

Result- raw EMG for S9

Discussion

- There is a clear difference between the amputee swimmer and the triathlon swimmer in:
- Body roll, SR, cycle phases and muscle activity
- There are many good studies on single arm amputated swimmers, but fewer on single leg
- This study shows that there is clearly a room for research on these elite athletes

Is Competition: therapeutic???

Acknowledgement

> INAS-FID: International Sports Federation for Persons with Intellectual Disability
> International Paralympic Committee (\& IPC Swimming)
> Veronique Colman(${ }^{\dagger}$) for Analysis help
> Bruce Mason for some data collection
> Coauthors: Laurie Malone, Brendan Burkett, Jonas Martens, Connor Osborough, Carl Payton, Robert Steadward

Imporitant points to think aboutt

- In free and breast, the relation between start speed and end race result are highest in class $S(B) 6$ where the greatest mix of in and out of water starters occurs.
- $\quad S(B) 6$ is, in fact, the only class in which start speed correlates with end race result in all strokes.
- It therefore seems reasonable to encourage all swimmers to use a block start when possible.

Systematic check of the start time by the coach will of course indicate what is best for each particular swimmer.

Important points

- In the functional classification system, the same number of points is given to starting and turning. But as race distance increases, the number of turn's increases but there is always only one start.
- A new classification system for distance freestyle events could therefore be suggested.
- Evaluation of performance serves to combine similar classes and reduce the number of winners enhancing the strength of competition and maintain fairness. It becomes easier to arrange competition programs.
- Without careful consideration and research, the combination of classes may prompt some swimmers to drop out or retire immediately because they feel unfairly penalized.
- Decreasing the number of classes increases the numbers in each class and the potential for differences between swimmers. All the swimmers in a class however must theoretically have a similar chance to win.

1. Increases in SS were achieved by a 5% increase in SF coinciding with a 2% decrease in SL.
2. At SSmax, SF was significantly related to $S S(r=0.72)$ whereas $S L$ was not.
3. Faster swimmers did not necessarily use longer and slower strokes to swim at a common sub-maximal speed when compared to their slower counterparts.
4. No correlations existed between SL and any anthropometric characteristics.
5. Bi-acromial breadth, shoulder girth and upper-arm length significantly correlated with the SF at SSmax.
6. IdCadapt did not change with an increase in swimming speed up to max. (catch-up model).
7. All swimmers showed significantly more catch-up before their affected-arm pull compared to their unaffected-arm pull.
8. At SSmax, the fastest swimmers used higher SF and less catch-up before their affected-arm pull, compared to the slower swimmers.

General Conclusion

Few differences between how able bodied and Paralympic swimmers win the race

Within considerations of
boarders and overlapping the classification system does the job

Other Variables?

- Swim Straight
- Stroke count in turns
- Block Reaction at Start
- Breathing Strategy
- Relaxation and Rhythm
-???

